If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X-85=0
a = 1; b = 4; c = -85;
Δ = b2-4ac
Δ = 42-4·1·(-85)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{89}}{2*1}=\frac{-4-2\sqrt{89}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{89}}{2*1}=\frac{-4+2\sqrt{89}}{2} $
| 3x-$25=$154 | | (8-c)²+81=100 | | 2x+5x=35x= | | x^2x-6=36^3x-5 | | 20+4h+4=h | | 4y×2+5y-21=0 | | x+2(14-3x)=13 | | x+2(14-3x)=14 | | y=U+X-(170-C) | | 16x=200/4 | | 2+4x=11=x | | 2/3=5000x | | 573x+465=13 | | 3y=9÷3 | | 8x-28=5x+5 | | 63=9/5+c | | 29-2x=9-7 | | 8(2.5^n-1)=1500 | | 3²y-¹=(9)(27)y-² | | (x+3)2=3 | | x²–28x+49=0 | | 5b-1=b+19 | | 2z/9+4=1z= | | 20y+5=9y= | | 7(x-7)=77# | | (6-)x/6=-5 | | 10x2+11=-3 | | 90=9÷5×c+32 | | -9x-3x=16 | | 2p+22=24 | | 19=9+5(t+2) | | 2x-5=7x+(12-x) |